1．Scope

1．1 This specification for approve relates to the Fusible Resistors manufactured by UNI－ROYAL．
1．2 Ideal circuit opening controller，disconnecting units from overload rating specified
1．3 Too low or too high ohmic value can be supplied on a case to case to case basis
1．4 UL items available（File NO：E306074，E245468）

2．Part No．System

The standard Part No．includes 14 digits with the following explanation：
2．1 Coated type，the 1 st to 3 rd digits are to indicate the product type and 4 th digit is the special feature．Example：FRN0＝Fusible Resistors Type；
2.2 5th ~ 6 th digits：

2．2．1 This is to indicate the wattage or power rating．To dieting the size and the numbers，
The following codes are used；and please refer to the following chart for detail：
W＝Normal Size；＂1＂～＂G＂to denotes＂1＂～＂16＂as Hexadecimal：

$$
1 / 16 \mathrm{~W} \sim 1 / 2 \mathrm{~W}(<1 \mathrm{~W})
$$

Wattage	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$1 / 6$	$1 / 8$	$1 / 10$	$1 / 16$
Normal Size	W 2	W 3	W 4	W 5	W 6	W 8	WA	WG

$1 \mathrm{~W} \sim 16 \mathrm{~W}(\geqq 1 \mathrm{~W})$

Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1 W	2 W	3 W	5 W	7 W	8 W	9 W	AW	FW

2．2．2 For power rating less than 1 watt，the 5 th digit will be the letters W to represent the size required $\&$ the 6 th digit will be a number or a letter code．
Example：W4＝1／4W
2．2．3 For power of 1 watt to 16 watt，the 5 th digit will be a number or a letter code and the 6 th digit will be the letters of W ． Example：AW＝10W
2．3 The 7th digit is to denote the Resistance Tolerance．The following letter code is to be used for indicating the standard Resistance Tolerance． $\mathrm{F}= \pm 1 \% \quad \mathrm{G}= \pm 2 \% \quad \mathrm{~J}= \pm 5 \% \quad \mathrm{~K}= \pm 10 \%$
2．4 The 8th to 11 th digits is to denote the Resistance Value．
2．4．1 For the standard resistance values of E－24 series，the 8 th digit is＂ 0 ＂，the 9 th $\& 10$ th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following．
2．4．2 The following number s and the letter codes is to be used to indicate the number of zeros in the 11th digit： $0=10^{0} \quad 1=10^{1} \quad 2=10^{2} \quad 3=10^{3} \quad 4=10^{4} \quad 5=10^{5} \quad 6=10^{6} \quad \mathrm{~J}=10^{-1} \quad \mathrm{~K}=10^{-2} \quad \mathrm{~L}=10^{-3} \quad \mathrm{M}=10^{-4}$
2．4．3 The 12 th， 13 th $\& 14$ th digits．
The 12th digit is to denote the Packaging Type with the following codes：
A＝Tape／Box（Ammo pack）B＝Bulk／Box
$\mathrm{T}=$ Tape／Reel $\quad \mathrm{P}=$ Tape／Box of PT－26 products
2．4．4 The 13 th digit is normally to indicate the Packing Quantity of Tape／Box \＆Tape／Reel packaging types．Except for Chip products Bulk packing，this digit should be filled＂0＂or other products with Bulk／Box packing requirement．The following letter code is to be used for some packing quantities：

$$
\mathrm{A}=500 \mathrm{pcs} \quad \mathrm{~B}=2500 \mathrm{pcs} \quad \mathrm{C}=10000 \mathrm{pcs} \quad \mathrm{D}=20000 \mathrm{pcs} \quad \mathrm{G}=25000 \mathrm{pcs} \quad \mathrm{H}=50000 \mathrm{pcs}
$$

2．4．5 For the FORMED type products，the 13 th $\& 14$ th digits are used to denote the forming types of the product with the following letter codes：

$\mathrm{MF}=\mathrm{M}$－type with flattened lead wire	F0＝F－type
$\mathrm{MK}=\mathrm{M}$－type with kinked lead wire	F1＝F1－type
$\mathrm{ML}=\mathrm{M}$－type with normal lead wire	F2＝F2－type
$\mathrm{MC}=\mathrm{M}$－type with bending lead wire	F3＝F3－type

2．4．6 For some items，the 14th digit alone can use to denote special features of additional information with the following codes：

0＝NIL	P＝Panasert type	1＝Avisert type 1	2＝Avisert type 2
3＝Avisert type 3	$8=$ PT－58mm	9＝PT－64mm	7＝Lead wire $(\mathrm{H}) 38 \mathrm{~mm}$
A＝PT－83mm	C＝PT－73mm	D＝PT－71mm	

UNI-ROYAL

3. Ordering Procedure

(Example: FRN 1/2W $\pm 5 \%$ 2.2 T/B-1000)

4. Marking

Resistors shall be marked with color coding
Colors shall be in accordance with JIS C 0802

4.1 Label:

Label shall be marked with following items:
(1) Type and style
(2) Nominal resistance
(3) Resistance tolerance
(4) Quantity
(5) Lot number

Example:

FUSIBLE RESISTORS

WATT: $1 / 2 \mathrm{~W}$	VAL: 2.2Ω
Q'TY: 2,000	TOL: 5%
LOT: 3021548	PPM:

5．Ratings \＆Dimension

Type	Dimension（mm）					Dielectric Withstanding Voltage	Tolerance	Resistance Range
	D	L	$\mathrm{d} \pm 0.05$	$\mathrm{H} \pm 3$	PT			
FRN 1／4W	2.2 ± 0.5	6.5 ± 1.0	0.60	28	52	300 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$
FRN 1／2WS	2.2 ± 0.5	6.5 ± 1.0	0.60	28	52	300 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$
FRN 0．4W	2.2 ± 0.5	6.5 ± 1.0	0.60	28	52	300 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$
FRN 1／2W	3.0 ± 0.5	9.0 ± 1.0	0.60	28	52	350 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$
FRN 3／4W	3.5 ± 0.6	9.5 ± 1.0	0.54	28	52	350 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$
FRN 1W	3.5 ± 0.6	9.5 ± 1.0	0.54	28	52	350 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$
FRN 1．5W	4.5 ± 0.6	11.5 ± 1.0	0.70	25	52	600 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$
FRN 2W	4.5 ± 0.6	11.5 ± 1.0	0.70	25	52	600 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$
FRN 3W	5.0 ± 0.6	15.5 ± 1.0	0.80	28	64	600 V	$\pm 2 \%$ ，$\pm 5 \%$ ，$\pm 10 \%$	$0.22 \Omega \sim 10 \mathrm{~K} \Omega$

6．Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from $-55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．For temperature in excess of $70^{\circ} \mathrm{C}$ ，the load shall be derate as shown in

Figure 1

6．1 Voltage rating：

Resistors shall have a rated direct－current（DC）continuous working voltage or an approximate sine－wave root－mean－square（RMS）alternating－ current（AC）continuous working voltage at commercial－line frequency and waveform corresponding to the power rating，as determined from the following formula：

$$
R C W V=\sqrt{P \times R}
$$

Where：RCWV＝Rated DC or RMS ac continuous working voltage at commercial－line frequency and waveform（VOLT．）

$$
\mathrm{P}=\text { power rating (WATT.) } \quad \mathrm{R}=\text { nominal resistance }(\mathrm{OHM})
$$

The overload voltage is 2.5 times RCWV or Max．Overload voltage whichever is less．

UniOhm

7．Structure

No．	Name	Material
1	Basic body	Rod type ceramics
2	Resistor	Nickel plated
3	End cap	Steel（Tin plated iron surface）
4	Lead wire	Tin solder coated copper wire
5	Joint	By welding
6	Coating	Insulated resin Color：Normal Size ：Rust ；Small Size ：Pink
7	Color code	Epoxy resin

8．Performance Specification

Characteristic	Limits	Test Method （GB／T5729\＆JIS－C－5201\＆IEC60115）
Temperature Coefficient	$\pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	4．8 Natural resistance changes per temp．Degree centigrade $\begin{aligned} & \frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right) \quad \frac{\mathrm{R}_{3}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right) \\ & \mathrm{R}_{1}: \text { Resistance Value at room temperature }\left(\mathrm{t}_{1}\right) ; \\ & \mathrm{R}_{2}: \text { Resistance Value at upper limit temperature } \pm 2^{\circ} \mathrm{C}\left(\mathrm{t}_{2}\right) \\ & \mathrm{R}_{3}: \text { Resistance Value at lower limit temperature } \pm 3^{\circ} \mathrm{C}\left(\mathrm{t}_{3}\right) \\ & \text { Test pattern : } \quad \text { Room temperature : }\left(\mathrm{t}_{1}\right) \\ & \\ & \quad \text { Upper limit temperature }:\left(\mathrm{t}_{2}\right) \\ & \text { Lower limit temperature }:\left(\mathrm{t}_{3}\right) \end{aligned}$
Short－time overload	Resistance change rate must be in $\pm(2 \%+0.05 \Omega)$ ，and no mechanical damage．	4．13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds．
Dielectric withstanding voltage	No evidence of flashover mechanical damage，arcing or insulation break down．	4．7 Resistors shall be clamped in the trough of a 90° metallic v－ block and shall be tested at ac potential respectively specified in the above list for 60－70 seconds．
Terminal strength	No evidence of mechanical damage	4．16 Direct load： Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads． Twist test： Terminal leads shall be bent through 90° at a point of about 6 mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations．
Resistance to soldering heat	Resistance change rate must be in \pm （ $1 \%+0.05 \Omega$ ），and no mechanical damage．	4．18 Permanent resistance change when leads immersed to a point $2.0-2.5 \mathrm{~mm}$ from the body in $260^{\circ} \mathrm{c} \pm 5^{\circ} \mathrm{c}$ solder for 10 ± 1 seconds．
Solderability	95\％coverage Min．	4．17 The area covered with a new，smooth，clean，shiny and continuous surface free from concentrated pinholes． Temperature of solder： $245^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ Dwell time in solder： $2 \sim 3$ seconds．

Rapid change of temperature	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	4.1930 min at lower limit temperature and 30 min at upper limit temperature， 5 cycles．		
Load life in humidity	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	7.9 resistance change after 1,000 hours（ 1.5 hours＂ON＂， 0.5 hour ＂OFF＂）at RCWV in a humidity test chamber controlled at $40^{\circ} \mathrm{C} \pm 2$ ${ }^{\circ} \mathrm{C}$ and 90 to 95% relative humidity．		
Load life	Resistance change rate must be $\operatorname{in} \pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	4．25．1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours＂ON＂， 0.5 hour＂OFF＂at 70 ${ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ambient．		
Flame retardant	Resistor insulation is self－extinguishing within 10 seconds after externally applied flame is removed	4.26 the burner is placed remote from resistor ignited and adjusted to produce a blue flame 38 mm in height and a top of flame 127 mm above the top of burner tube． Resistor is supported from its lead at 45 degree from the horizontal so that the lower end of resistor is the top of blue flame；the test flame is placed to remain for 15 seconds and removed for 15 seconds ．the operation is to be repeated until resistor has been subjected to 5 application of test flame．		
Fusing test	Excess 50 times than actual value．	Fusing times and the contrast：		
		Resista nce Range $\leqq 2.2 \Omega$	Test Power	Fusing Time
			$\begin{gathered} 32 \times \text { Power } \\ \text { Rating } \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ \text { seconds } \end{gathered}$
		$>2.2 \Omega$	$16 \times$ Power Rating	$\begin{gathered} 60 \\ \text { seconds } \end{gathered}$
		$\mathrm{V}=\sqrt{\text { Fusing Voltage }} \mathrm{R} \times \mathrm{W} \times \text { Times }$		
Low Temperature Storage	Resistance change rate must be $\operatorname{in} \pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	4．23．4 Lower limit temperature，for 2 H ．		
High Temperature Exposure	Resistance change rate must be in $\pm(5 \%+0.05 \Omega)$ ，and no mechanical damage．	4．23．2 Upper limit temperature，for 16 H ．		

9．Packing of Surface Mount Resistors

9．1 Tapes in Box Packing

Type	O	P	$\mathbf{A} \pm \mathbf{5}$	$\mathbf{B} \pm \mathbf{5}$	$\mathbf{C} \pm \mathbf{5}$	Qty．／Box
FRN 1／4W	52 ± 1	5 ± 0.3	75	116	255	5,000 PCS
FRN 1／2WS	52 ± 1	5 ± 0.3	75	116	255	5,000 PCS
FRN 0．4W	52 ± 1	5 ± 0.3	75	116	255	5,000 PCS
FRN 1／2W	52 ± 1	5 ± 0.3	75	45	255	1,000 PCS
FRN 3／4W	52 ± 1	5 ± 0.3	80	70	255	1,000 PCS
FRN 1W	52 ± 1	5 ± 0.3	80	70	255	1,000 PCS
FRN 1．5W	52 ± 1	5 ± 0.3	86	82	255	1,000 PCS
FRN 2W	52 ± 1	5 ± 0.3	86	82	255	1,000 PCS
FRN 3W	64 ± 5	10 ± 0.5	90	119	255	1,000 PCS

Fusible Resistors Data Sheet
9.2 Tapes in Reel Packing

Type	O	A	$\mathbf{W} \pm \mathbf{5}$	$\mathbf{H} \pm \mathbf{5}$	$\mathbf{L} \pm \mathbf{5}$	Qty./Box
FRN 1/4W	52 ± 1	73 ± 2	85	295	293	5,000 PCS
FRN 1/2WS	52 ± 1	73 ± 2	85	295	293	5,000 PCS
FRN 0.4W	52 ± 1	73 ± 2	85	295	293	5,000 PCS
FRN 1/2W	52 ± 1	73 ± 2	85	295	293	2,500 PCS
FRN 3/4W	52 ± 1	73 ± 2	85	295	293	2,500 PCS
FRN 1W	52 ± 1	73 ± 2	85	295	293	2,500 PCS
FRN 1.5W	52 ± 1	73 ± 2	85	295	293	2,500 PCS
FRN 2W	52 ± 1	73 ± 2	85	295	293	2,500 PCS
FRN 3W	64 ± 5	80 ± 5	95	295	293	1,000 PCS

9.3 Bulk in Box Packing

Part No.	$\mathrm{A} \pm 5$	$\mathrm{~B} \pm 5$	$\mathrm{C} \pm 5$	Qty.of Bag/Box
FRN 1/4W	140	80	240	$500 / 10,000 \mathrm{pcs}$
FRN 1/2WS	140	80	240	$500 / 10,000 \mathrm{pcs}$
FRN 0.4W	140	80	240	$500 / 10,000 \mathrm{pcs}$
FRN 1/2W	140	80	240	$250 / 5,000 \mathrm{pcs}$
FRN 3/4W	140	80	240	$250 / 5,000 \mathrm{pcs}$
FRN 1W	140	80	240	$250 / 5,000 \mathrm{pcs}$
FRN 1.5W	140	80	240	$100 / 2,500 \mathrm{pcs}$
FRN 2W	140	80	240	$100 / 2,500 \mathrm{pcs}$
FRN 3W	140	80	240	$100 / 1,500 \mathrm{pcs}$

UNI－ROYAL
悪鳘票䚓

10．Note

10．1 UNI－ROYAL recommend the storage condition temperature： $15^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}$ ，humidity $: 25 \% \sim 75 \%$ ．
（Put condition for individual product）
Even under UNI－ROYAL recommended storage condition，solderability of products over 1 year old．
（Put condition for each product）may be degraded．
10．2 Store／transport cartons in the correct direction，which is indicated on a carton as a symbol．
Otherwise bent leads may occur due to excessive stress applied when dropping of a carton．
10．3 Product performance and soldered connections may deteriorate if the products are stored in the following places：
a．Storage in high Electrostatic
b．Storage in direct sunshine－rain and snow or condensation
c．Where the products are exposed to sea winds or corrosive gases，including $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}_{3} \mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$ ．

11．Record

Version	Description of amendment	Page	Date	Amended by	
1	First issue of this specification	$1 \sim 8$	Mar．20，2018	Chen Haiyan	Chen Nana

\qquad

Uniroyal Electronics Global Co．，Ltd．，all rights reserved．Spec．herein would be changed at any time without prior notice

